• About
  • Privacy Policy
  • Disclaimer
  • Contact

Free kindle book downloads

  • Home
  • How To Download
Home » Engineering » Distillation Design and Control Using Aspen Simulation

Distillation Design and Control Using Aspen Simulation

Unknown
Add Comment
Engineering
Friday, September 13, 2013

Distillation Design and Control Using Aspen Simulation

Author: William L. Luyben | Language: English | ISBN: 1118411439 | Format: PDF

Distillation Design and Control Using Aspen Simulation Description

The new edition of this book greatly updates and expands the previous edition. It boasts new chapters on the divided wall column and carbon dioxide capture from stack gas, revises the design and control of distillation systems, and explains the use of dynamic simulation to study safety issues in the event of operating failures. Using Aspen Plus to develop rigorous simulations of single distillation columns and sequences of columns, the book considers the economics of capital investment and energy costs to create an optimal system for separation methods in the chemical and petroleum industries.
  • Product Details
  • Table of Contents
  • Reviews
  • Hardcover: 510 pages
  • Publisher: Wiley-AIChE; 2 edition (April 22, 2013)
  • Language: English
  • ISBN-10: 1118411439
  • ISBN-13: 978-1118411438
  • Product Dimensions: 10 x 7.1 x 1.2 inches
  • Shipping Weight: 2.2 pounds (View shipping rates and policies)

PREFACE TO THE SECOND EDITION xv

PREFACE TO THE FIRST EDITION xvii

1 FUNDAMENTALS OF VAPOR–LIQUID–EQUILIBRIUM (VLE) 1

1.1 Vapor Pressure / 1

1.2 Binary VLE Phase Diagrams / 3

1.3 Physical Property Methods / 7

1.4 Relative Volatility / 7

1.5 Bubble Point Calculations / 8

1.6 Ternary Diagrams / 9

1.7 VLE Nonideality / 11

1.8 Residue Curves for Ternary Systems / 15

1.9 Distillation Boundaries / 22

1.10 Conclusions / 25

Reference / 27

2 ANALYSIS OF DISTILLATION COLUMNS 29

2.1 Design Degrees of Freedom / 29

2.2 Binary McCabe–Thiele Method / 30

2.2.1 Operating Lines / 32

2.2.2 q-Line / 33

2.2.3 Stepping Off Trays / 35

2.2.4 Effect of Parameters / 35

2.2.5 Limiting Conditions / 36

2.3 Approximate Multicomponent Methods / 36

2.3.1 Fenske Equation for Minimum Number of Trays / 37

2.3.2 Underwood Equations for Minimum Reflux Ratio / 37

2.4 Conclusions / 38

3 SETTING UP A STEADY-STATE SIMULATION 39

3.1 Configuring a New Simulation / 39

3.2 Specifying Chemical Components and Physical Properties / 46

3.3 Specifying Stream Properties / 51

3.4 Specifying Parameters of Equipment / 52

3.4.1 Column C1 / 52

3.4.2 Valves and Pumps / 55

3.5 Running the Simulation / 57

3.6 Using Design Spec/Vary Function / 58

3.7 Finding the Optimum Feed Tray and Minimum Conditions / 70

3.7.1 Optimum Feed Tray / 70

3.7.2 Minimum Reflux Ratio / 71

3.7.3 Minimum Number of Trays / 71

3.8 Column Sizing / 72

3.8.1 Length / 72

3.8.2 Diameter / 72

3.9 Conceptual Design / 74

3.10 Conclusions / 80

4 DISTILLATION ECONOMIC OPTIMIZATION 81

4.1 Heuristic Optimization / 81

4.1.1 Set Total Trays to Twice Minimum Number of Trays / 81

4.1.2 Set Reflux Ratio to 1.2 Times Minimum Reflux Ratio / 83

4.2 Economic Basis / 83

4.3 Results / 85

4.4 Operating Optimization / 87

4.5 Optimum Pressure for Vacuum Columns / 92

4.6 Conclusions / 94

5 MORE COMPLEX DISTILLATION SYSTEMS 95

5.1 Extractive Distillation / 95

5.1.1 Design / 99

5.1.2 Simulation Issues / 101

5.2 Ethanol Dehydration / 105

5.2.1 VLLE Behavior / 106

5.2.2 Process Flowsheet Simulation / 109

5.2.3 Converging the Flowsheet / 112

5.3 Pressure-Swing Azeotropic Distillation / 115

5.4 Heat-Integrated Columns / 121

5.4.1 Flowsheet / 121

5.4.2 Converging for Neat Operation / 122

5.5 Conclusions / 126

6 STEADY-STATE CALCULATIONS FOR CONTROL STRUCTURE SELECTION 127

6.1 Control Structure Alternatives / 127

6.1.1 Dual-Composition Control / 127

6.1.2 Single-End Control / 128

6.2 Feed Composition Sensitivity Analysis (ZSA) / 128

6.3 Temperature Control Tray Selection / 129

6.3.1 Summary of Methods / 130

6.3.2 Binary Propane/Isobutane System / 131

6.3.3 Ternary BTX System / 135

6.3.4 Ternary Azeotropic System / 139

6.4 Conclusions / 144

Reference / 144

7 CONVERTING FROM STEADY-STATE TO DYNAMIC SIMULATION 145

7.1 Equipment Sizing / 146

7.2 Exporting to Aspen Dynamics / 148

7.3 Opening the Dynamic Simulation in Aspen Dynamics / 150

7.4 Installing Basic Controllers / 152

7.4.1 Reflux / 156

7.4.2 Issues / 157

7.5 Installing Temperature and Composition Controllers / 161

7.5.1 Tray Temperature Control / 162

7.5.2 Composition Control / 170

7.5.3 Composition/Temperature Cascade Control / 170

7.6 Performance Evaluation / 172

7.6.1 Installing a Plot / 172

7.6.2 Importing Dynamic Results into Matlab / 174

7.6.3 Reboiler Heat Input to Feed Ratio / 176

7.6.4 Comparison of Temperature Control with Cascade CC/TC / 181

7.7 Conclusions / 184

8 CONTROL OF MORE COMPLEX COLUMNS 185

8.1 Extractive Distillation Process / 185

8.1.1 Design / 185

8.1.2 Control Structure / 188

8.1.3 Dynamic Performance / 191

8.2 Columns with Partial Condensers / 191

8.2.1 Total Vapor Distillate / 192

8.2.2 Both Vapor and Liquid Distillate Streams / 209

8.3 Control of Heat-Integrated Distillation Columns / 217

8.3.1 Process Studied / 217

8.3.2 Heat Integration Relationships / 218

8.3.3 Control Structure / 222

8.3.4 Dynamic Performance / 223

8.4 Control of Azeotropic Columns/Decanter System / 226

8.4.1 Converting to Dynamics and Closing Recycle Loop / 227

8.4.2 Installing the Control Structure / 228

8.4.3 Performance / 233

8.4.4 Numerical Integration Issues / 237

8.5 Unusual Control Structure / 238

8.5.1 Process Studied / 239

8.5.2 Economic Optimum Steady-State Design / 242

8.5.3 Control Structure Selection / 243

8.5.4 Dynamic Simulation Results / 248

8.5.5 Alternative Control Structures / 248

8.5.6 Conclusions / 254

8.6 Conclusions / 255

References / 255

9 REACTIVE DISTILLATION 257

9.1 Introduction / 257

9.2 Types of Reactive Distillation Systems / 258

9.2.1 Single-Feed Reactions / 259

9.2.2 Irreversible Reaction with Heavy Product / 259

9.2.3 Neat Operation Versus Use of Excess Reactant / 260

9.3 TAME Process Basics / 263

9.3.1 Prereactor / 263

9.3.2 Reactive Column C1 / 263

9.4 TAME Reaction Kinetics and VLE / 266

9.5 Plantwide Control Structure / 270

9.6 Conclusions / 274

References / 274

10 CONTROL OF SIDESTREAM COLUMNS 275

10.1 Liquid Sidestream Column / 276

10.1.1 Steady-State Design / 276

10.1.2 Dynamic Control / 277

10.2 Vapor Sidestream Column / 281

10.2.1 Steady-State Design / 282

10.2.2 Dynamic Control / 282

10.3 Liquid Sidestream Column with Stripper / 286

10.3.1 Steady-State Design / 286

10.3.2 Dynamic Control / 288

10.4 Vapor Sidestream Column with Rectifier / 292

10.4.1 Steady-State Design / 292

10.4.2 Dynamic Control / 293

10.5 Sidestream Purge Column / 300

10.5.1 Steady-State Design / 300

10.5.2 Dynamic Control / 302

10.6 Conclusions / 307

11 CONTROL OF PETROLEUM FRACTIONATORS 309

11.1 Petroleum Fractions / 310

11.2 Characterization Crude Oil / 314

11.3 Steady-State Design of Preflash Column / 321

11.4 Control of Preflash Column / 328

11.5 Steady-State Design of Pipestill / 332

11.5.1 Overview of Steady-State Design / 333

11.5.2 Configuring the Pipestill in Aspen Plus / 335

11.5.3 Effects of Design Parameters / 344

11.6 Control of Pipestill / 346

11.7 Conclusions / 354

References / 354

12 DIVIDED-WALL (PETLYUK) COLUMNS 355

12.1 Introduction / 355

12.2 Steady-State Design / 357

12.2.1 MultiFrac Model / 357

12.2.2 RadFrac Model / 366

12.3 Control of the Divided-Wall Column / 369

12.3.1 Control Structure / 369

12.3.2 Implementation in Aspen Dynamics / 373

12.3.3 Dynamic Results / 375

12.4 Control of the Conventional Column Process / 380

12.4.1 Control Structure / 380

12.4.2 Dynamic Results and Comparisons / 381

12.5 Conclusions and Discussion / 383

References / 384

13 DYNAMIC SAFETY ANALYSIS 385

13.1 Introduction / 385

13.2 Safety Scenarios / 385

13.3 Process Studied / 387

13.4 Basic RadFrac Models / 387

13.4.1 Constant Duty Model / 387

13.4.2 Constant Temperature Model / 388

13.4.3 LMTD Model / 388

13.4.4 Condensing or Evaporating Medium Models / 388

13.4.5 Dynamic Model for Reboiler / 388

13.5 RadFrac Model with Explicit Heat-Exchanger Dynamics / 389

13.5.1 Column / 389

13.5.2 Condenser / 390

13.5.3 Reflux Drum / 391

13.5.4 Liquid Split / 391

13.5.5 Reboiler / 391

13.6 Dynamic Simulations / 392

13.6.1 Base Case Control Structure / 392

13.6.2 Rigorous Case Control Structure / 393

13.7 Comparison of Dynamic Responses / 394

13.7.1 Condenser Cooling Failure / 394

13.7.2 Heat-Input Surge / 395

13.8 Other Issues / 397

13.9 Conclusions / 398

Reference / 398

14 CARBON DIOXIDE CAPTURE 399

14.1 Carbon Dioxide Removal in Low-Pressure Air Combustion Power Plants / 400

14.1.1 Process Design / 400

14.1.2 Simulation Issues / 401

14.1.3 Plantwide Control Structure / 404

14.1.4 Dynamic Performance / 408

14.2 Carbon Dioxide Removal in High-Pressure IGCC Power Plants / 412

14.2.1 Design / 414

14.2.2 Plantwide Control Structure / 414

14.2.3 Dynamic Performance / 418

14.3 Conclusions / 420

References / 421

15 DISTILLATION TURNDOWN 423

15.1 Introduction / 423

15.2 Control Problem / 424

15.2.1 Two-Temperature Control / 425

15.2.2 Valve-Position Control / 426

15.2.3 Recycle Control / 427

15.3 Process Studied / 428

15.4 Dynamic Performance for Ramp Disturbances / 431

15.4.1 Two-Temperature Control / 431

15.4.2 VPC Control / 432

15.4.3 Recycle Control / 433

15.4.4 Comparison / 434

15.5 Dynamic Performance for Step Disturbances / 435

15.5.1 Two-Temperature Control / 435

15.5.2 VPC Control / 436

15.5.3 Recycle Control / 436

15.6 Other Control Structures / 439

15.6.1 No Te

Distillation Design and Control Using Aspen Simulation Preview

Link

Please Wait...

0 Response to "Distillation Design and Control Using Aspen Simulation"

← Newer Post Older Post → Home
Subscribe to: Post Comments (Atom)

Social

127098
Fans
109987
Followers
29987
Followers
10923
Subcribers

Label

  • Art
  • Biography
  • Business
  • Calendars
  • Children
  • Comics
  • Computer
  • Cookbooks
  • Craft
  • Education
  • Engineering
  • Health
  • History
  • Humor
  • Literature
  • Medical
  • Mystery
  • Parenting
  • Politics
  • Religion
  • Romance

Page

  • Home
Powered by Blogger.
Back to top!
Copyright 2013 Free kindle book downloads - All Rights Reserved Design by Mas Sugeng - Powered by Blogger and Google